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Abstract

Numerous control problems in economics can be characterized as optimal switching

problems, including optimal stopping and entry/exit problems. With certain notable ex-

ceptions, solutions to such problems must be computed numerically. This paper discusses

an approach to obtaining a numerical solution in a fairly general setting and describes a

user-friendlyMATLAB implementation that simplifies that process.

Keywords: Optimal switching, stochastic control, computational methods

JEL classification codes:C61, C63, C88

Many problems in stochastic control involve situations in which an agent can choose among

a discrete set of states or regimes. The choice of a control can be thought of as the choice of

the regime. In addition, a diffusion process drives one or more state variables that affect the

returns associated with each of the regimes. The total returns to the agent are also affected by

the existence of costs associated with switching among the regimes.

Optimal switching models often arise in pricing so-called real options. The recent collec-

tions of Brennan and Trigeorgis(2000) and Schwartz and Trigeorgis(2001) provide an intro-

duction to this area and numerous examples. The widely read text by Dixit and Pindyck(1994)

also contains numerous examples of optimal switching models. The real options literature rec-

ognizes and attempts to value such things as the flexibility to defer action, to change from one

activity to another, to abandon an investment or to default on a project.

The simplest optimal switching models are optimal stopping problems, where one of the

regimes represents continuation and other represents a permanent “stopped” state. The Amer-
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ican option pricing problem is a well known example. More complicated optimal switch-

ing models allow for movement back and forth among regimes and may have more than two

regimes. A well known example introduced in McDonald and Siegel(1985), McDonald and

Siegel (1986), and Brennan and Schwartz(1985), is that of firm entry/exit. In such problems, a

firm can make an investment in an asset that produces an output with a stochastic price. When

the price is high enough, it is worth activation though investment in the asset. When the price

is low enough, however, the firm may abandon its investment and become inactive. In the basic

entry/exit model there are two regimes, active and inactive. An extension of this model adds a

third regime that allows for temporary suspension of production.

Brekke and Oksendal(1994) have provided general solution conditions for optimal switch-

ing models that can be expressed as a set of functional complementarity conditions. In most

cases explicit solutions to these conditions cannot be obtained. This paper discusses how nu-

merical solutions can be obtained using function approximation and collocation. The approach

results in a type of problem known as an Extended Vertical Linear Complementarity Prob-

lem (EVLCP) for which a number of solution algorithms exist. A user friendly interface for

defining and solving optimal switching models usingMATLAB is documented and illustrated.

Problem Statement and Optimality Conditions

The general optimal switching model applies to problems in which an agent must choose, at

each moment, amongm regimes,R ∈ {1, . . . ,m}. The agent can move from regimei to j at a

cost ofCij (which may be arbitrarily high, thereby ruling out such a movement).C represents

a lump-sum switching cost withCii = 0, i.e., there is no lump sum cost to remaining in the

2



current regime. The agent also receives a flow of payments per unit time off(S, R), which

depends on both the active regime and on a continuousd-dimensional state processS that is

described by

dS = µ(S, R)dt + σ(S, R)dW. (1)

The agent desires to maximize over an infinite time horizon the discounted value (discounted

at rateρ(S)) of the flow of payments received less any switching costs incurred.

Brekke and Oksendal (Theorem 3.4) have shown that the optimal value functionV (S,R)

satisfies1

ρ(S)V (S,R) ≥ f(S, R) + µ(S, R)VS(S,R) +
σ2(S, R)

2
VSS(S, R) (2)

and them− 1 conditions

V (S, R) ≥ V (S, x)− CRx, ∀x 6= R (3)

Furthermore, one of thesem conditions must be satisfied with equality at each(S, R). Which

one is satisfied with equality determines the optimal policy. Thus, ifV (S, R) = V (S, x)−CRx,

for somex, it is optimal atS to switch fromR to x. Otherwise it is optimal to remain in regime

R and the first condition is satisfied with equality.

There is a simple economic intuition behind these conditions. The value function can be

thought of as the value of the assets that generate the payment flows. By Ito’s Lemma the

1If S is multidimensional, this condition is more accurately written as

ρV ≥ f +
∑

i

µi
∂V

∂Si
+

1
2

∑

i

∑

j

Σij
∂2V

∂Si∂Sj

whereΣij =
∑

k σikσjk. The simpler form is to avoid notational clutter.
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expected rate of appreciation of those assets is

dE[V (S, R)]

dt
= µ(S,R)VS(S, i) +

σ2(S,R)

2
VSS(S, R). (4)

The total rate of return when regimeR is active equals the current return flowf(S, R) plus

the expected rate of capital appreciationdE[V (S,R)]/dt. Thus, the first condition states that

the rate of return obtainable by investingV dollars must be at least as great as the total rate

of return generated by the assets if one remains in regimeR. The second condition states that

the value function must be at least as great as the value that could be obtained by switching

regimes.

Anticipating the numerical approach discussed in the next section, the optimality conditions

can be written in the following equivalent form

0 = min
(
β(S,R)− f(S, R), min

x 6=R
V (S, R)− V (S, x) + CRx

)
(5)

where

β(S, R) = ρ(S)V (S, R)− µ(S, R)VS(S, R)− σ2(S, R)

2
VSS(S,R) (6)

It should also be pointed out that this condition does not fully characterize the solution. In

particular, additional regularity conditions are needed to uniquely defineV . Essentially these

amount to conditions that rule out explosive growth in the value function.

To illustrate the framework, an example from Brekke and Oksendal is reviewed. Consider

a mine currently containingQ units of ore. The mine is either idle (R = 1) or ore is extracted

at ratehQ (R = 2) with a fixed cost ofk incurred. The transition equation forQ is thus

dQ =





0 if R = 1

−hQdt if R = 2

(7)
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The current price at which ore can be sold evolves according to a geometric Brownian motion

dP = µPdt + σPdW (8)

The flow of returns to the mine is

f(Q,P,R) =





0 if R = 1

hQP − k if R = 2

(9)

The firm incurs fixed startup and shutdown costs ofC12 andC21 and uses a fixed discount rate

of ρ.

The solution conditions are

0 = min
(
ρV (Q, P, 1)− µPVp(Q,P, 1)− 1

2
σ2P 2VPP (Q, P, 1),

V (Q,P, 1)− V (Q,P, 2) + C12

) (10)

and

0 = min
(
ρV (Q, P, 2)− µPVp(Q,P, 2)− 1

2
σ2P 2VPP (Q, P, 2)

+ hQVQ(Q,P, 2)− (hQP − k), V (Q,P, 2)− V (Q,P, 1) + C21

) (11)

As Brekke and Oksendal point out, the problem can be simplified by definingy = QP and

noting that

dy =





µydt + σydW if R = 1

(µ− h)ydt + σydW if R = 2

(12)

and

f(Q,P,R) = f(y, R) =





0 if R = 1

hy − k if R = 2

(13)

Expressing the value function in terms ofy andR, the optimality conditions are

0 = min
(
ρV (y, 1)− µyVy(y, 1)− 1

2
σ2y2Vyy(y, 1), V (y, 1)− V (y, 2) + C12

)
(14)
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and

0 = min
(
ρV (y, 2)− (µ− h)yVy(y, 2)− 1

2
σ2y2Vyy(y, 2)− (hy − k),

V (y, 2)− V (y, 1) + C21

) (15)

∀y ∈ [0,∞).

Numerical Solutions Methods

Optimal switching models generally require numerical approximations. In simple models the

functional form of the solution may be known and numerical methods are required only to

compute a limited set of parameter values. In particular, problems with a single geometric

Brownian motion state, such as the one-dimensional formulation of the example given in the

previous section, often can be solved in this way (see Dixit and Pindyck(1994) for more

examples and nearly explicit solutions).

For general problems, however, the functional form of the solution may not be known.

Projection methods (Judd(1998), Miranda and Fackler(2002)) using complete families of

approximating functions represent a natural way to find approximate solutions to such models.

Suppose thatV (S, i) is approximated byφ(S)θi, whereφ represents a set ofn basis functions

for a family of approximating functions andθi is an n-vector of coefficients for the value

function associated with theith regime. Define the approximate differential operator

β(S, i) = ρ(S)φ(S)− µ(S, i)φ′(S) +
σ2(S, i)

2
φ′′(S) (16)

The inequality conditions can now be written as

β(S, i)θi − f(S, i) ≥ 0 (17)
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and

φ(S)θi − φ(S)θj + Cij(S) ≥ 0, ∀j 6= i (18)

Values of theθi can be obtained by collocation, which solves the optimality conditions at a

set ofn nodal state values{sk}. Define then× n matricesΦ andBi as the functionsφ(S) and

β(S, i) evaluated at the nodal values. Similarly, definefi to be then-vector of values off(S, i)

evaluated at then nodal state values.

The problem can now be stated as an extended vertical linear complementarity problem

(EVLCP),2 which seeks a solutionz to

0 = min(M1z + q1,M2z + q2, . . . , Mmz + qm). (19)

where theMi are eachN ×N and theqi are eachN × 1 and where the min operator is applied

element-wise. The EVLCP could also be written aswi = Miz + qi ≥ 0 for i = 1, . . . ,m and

m∏
i=1

wi = 0 (20)

where the product is taken element-wise. The solution to an EVLCP problem thus requires

that each of thewi be nonnegative and that for each of theN elements, at least one of them wi

values is exactly zero. Unlike more common complementarity conditions (such as the Karush-

Kuhn-Tucker conditions) the complementarity here extends overm variables rather than only

over two and hence cannot be written as a vector orthogonality condition.

In the general formz represents them column vectorsθi stacked vertically. TheMi are

given by

Mi = eiei
> ⊗Bi + (Im − 1mei

>)⊗ Φ (21)

2This generalization of the standard linear complementarity problem has a number of names in the literature

including the extended generalized order LCP (Gowda and Sznajder (1994)).
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and theqi are given by

qi =




C1i1n

· · ·

Cmi1n



− [ei ⊗ fi] (22)

where1m is a column vector composed ofm ones andei is theith column of anm×m identity

matrix. Thus

M1 =




B1 0 · · · 0

−Φ Φ · · · 0

· · · · · · · · · · · ·

−Φ 0 · · · Φ




, q1 =




−f1

C211n

· · ·

Cm11n




(23)

M2 =




Φ −Φ · · · 0

0 B2 · · · 0

· · · · · · · · · · · ·

0 −Φ · · · Φ




, q2 =




C121n

−f2

· · ·

Cm21n




(24)

etc.

A number of solution approaches for solving EVLCPs have been proposed, each based on

solution approaches that have proven useful for related problems. Cottle and Dantzig(1970)

proposed a pivoting strategy for a related problem that is based on Lemke’s algorithm for solv-

ing ordinary LCPs (Lemke(1965)).3 Details on modifications to the Lemke-based algorithm

3Cottle and Dantzig (1970) proposed this algorithm for what they termed the generalized LCP, which has since

become known as the vertical LCP. This is a special case of the EVLCP in which one of theMi is an identity

matrix and the associatedqi is a vector of zeros.
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for EVLCPs are available from the author. In the first discussion of the application of EVLCPs

to control theory, Sun(1989) proposed an iterative algorithm similar in spirit to the Projected

Successive Over-Relaxation (PSOR) method for solving LCPs. This method, however, can

be unstable for solving the kind of problems considered here. Recently, a smoothing Newton

method using a so-called aggregation function (also known as an entropy function) has been

proposed by Qi and Liao(1999). In numerical trials for the kind of problems considered here,

the smoothing Newton method has the best performance characteristics.

To date theoretical results on the solvability of EVLCPs are mostly limited to the case in

which all row-representative matrices associated with theMi are nonsingular with determinants

of the same sign, the so-calledW property (see Gowda and Sznajder(1994)). Unfortunately, in

the present case, singularity of a row representative matrix can result, and hence these results

do not apply. It also means that it is possible for the Lemke-based and smoothing Newton

based methods to fail. In practice, however, this does not seem to be a problem.

The quality of the approximate solution depends on both the choice of the family of approx-

imating functions and the set of nodal values used to obtain the collation solution. In general

V (S,R) is not smooth, but exhibits discontinuity in the second derivative at points for which

it is optimal to switch fromR to another regime.4 For this reason polynomial approximations

generally perform poorly. A better alternative is to use either piecewise linear functions (using

finite differences to approximateφ′ andφ′′) or cubic spline functions because these functions

are not as adversely affected by the derivative discontinuities.

4If Cij = Cji = 0 at a pointS for which is it optimal to switch betweeni and j, then the value func-

tion will exhibit discontinuity in the third derivative (see the related discussion of super-contact conditions in

Dumas (1991))
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A MATLAB Implementation

To specify an optimal switching model, an analyst must define the functionsf(S, R), ρ(S),

µ(S, R) andσ(S, R) and assign values to any parameters that these function use as well as to

the cost parameter matrixC. To solve the model using the function approximation approach

described in the previous section also requires that the analyst specify the family of approxi-

mating functions to be used and the nodal values ofS at which to evaluate the complementarity

conditions.

This section describes an implementation inMATLAB that makes the solution process rela-

tively simple (the code described here can be downloaded from the author’s website). The first

step is to code a model function file according to the following template:

function out=func(flag,S,R,additional parameters)
switch flag
case ’f’

out = reward function f(S,R);
case ’mu’

out = drift function mu(S,R);
case ’sigma’

out = diffusion function sigma(S,R);
case ’rho’

out = discount rate rho(S);
end

The procedure will be passed a string variableflag , an nm × d matrix of values of the

continuous stateS, a scalar value of the regimeR and any additional parameters needed to

evaluate the model functions. When theflag variable isf the procedure should return an

nm× 1 vector, whenflag is muit should return annm× d matrix, whenflag is sigma it

should return annm× d× d array and whenflag is rho it should return annm× 1 vector

(or a scalar ifρ is a constant).
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The model specification is completed by defining a structure variablemodel with the fol-

lowing three fields:5

func the name of the model function file
params a cell array with the parameters to pass to the model function file
cost them×m switching cost matrixC

The family of approximating functions is specified by using the procedures in the Comp-

Econ Toolbox described in Miranda and Fackler(2002) which is available from Fackler’s

website. The toolbox procedures can be used to create a structure variable calledfspace

containing all the information needed to define the necessary basis matrices.

The main solution procedure is a procedure calledossolve which has the following syn-

tax:

[cv,snodes,x,xindex]=ossolve(model,fspace,snodes,cv);

The first two inputs have already been described and are the only ones needed. The third input,

if passed, is a set of nodal values ofS. If S is one-dimensional, this should be a simple column

vector. If S is d-dimensional,snodes should be passed as a cell array of column vectors.

These will be expanded byossolve into a grid of values, the size of which,n, will equal the

product of the lengths of the vectors. The fourth input, if passed, is ann×m matrix of initial

values for the coefficients of the value function approximations.

The first output returned by the procedure is ann ×m matrix of coefficients of the value

function approximations. The value function can now be evaluated at arbitrary values of(S,R)

using the CompEcon Toolbox function call

5Structure variables inMATLAB are user defined data type with named fields. The data in a field is accessed us-

ing the syntaxvariablename.fieldname . Cell arrays are data types with fields accessed by index number,

e.g.,variablename {i,j }.
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V=funeval(cv(:,R),fspace,S);

The marginal value (shadow price) function can be obtained in a similar fashion using

dV=funeval(cv(:,R),fspace,S,1);

The second and third outputs provide the nodal values used in finding the solution (nm×d)

and the optimal regime choice at the nodal values (nm×m). This provides a representation of

optimal decision rule. This representation, of course, is only as accurate the mesh size of the

grid of nodal points.

The fourth outputxindex (m × 6) is useful for characterizing on the optimal decision

rule in one dimensional problems. For each of them regimes it contains information about the

lower and upper boundaries of the no-switch region. The first column contains the approximate

location of the lower bound, the second column contains the regime number that it is optimal to

switch to at that point and the third column contains the difference in the derivatives of the value

functions for the two regimes at the approximate switch point (this difference should be zero

and thus provides a check on the solution). Columns 4 through 6 provides similar information

at the upper bound of the no-switch region.xindex is returned as an empty matrix when

d > 1.

A separate utility is also provided to evaluate the optimal decision rule and the value func-

tion at arbitrary points and works for any value ofd. It is called with the following syntax:

[regime,V,dV]=osoptimum(S,R,cv,model,fspace);

The first input is ak × d matrix of arbitrary values ofS. The second inputR is either scalar or

ak × 1 vector of values of the regime number. The remaining inputs are the coefficient matrix

returned fromossolve and the model definition and function definition structures passed to

ossolve .
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The utility returns a best guess of the optimal decision rule, the value function and the

marginal value (shadow price) function at the points(S, R) (the sizes of the outputs arek × 1,

k × 1 andk × d, respectively). The optimal decision rule is determined by calculating the

value function at(S, R) as well as the value function atS for the other regimes less the cost of

switching to them fromR. The best switch is computed and then compared to the no-switch

strategy.

It is, however, impossible to determine with complete satisfaction the location of no-switch

boundary due to the approximations inherent in the solution approach. The value function for

any given regime should be exactly equal to the value of the best switch strategy outside the no-

switch region and should be strictly greater everywhere within the region. As a compromise,

the utility assumes that a switch should occur unless

V (S, R)−max
x 6=R

(V (S, x)− Crx) > ε|V (S, R)| (25)

whereε is set to the default value of10−5 (this value can be set by the user with the call

optset(’osoptimum’,’tol’,epsilon) , whereepsilon is any desired value). A

useful check on the accuracy of this utility is to compare the output of the call

regime=osoptimum(snodes,i,cv,model,fspace);

to the values ofx(:,i) returned byossolve (they should be identical).

Practicalities and Extensions

There are three choices an analyst must make in usingossolve : the family of approximating

functions, the nodal values at which to solve the complementarity conditions and the initial
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coefficient values to use. As already mentioned, the use of smooth families of functions, like

polynomials, is not recommended for switching models because of the discontinuities that

occur in the second derivatives of the value function at the optimal switching points. Instead

either cubic splines or piecewise linear functions with finite difference derivatives are better

choices. These families can be defined using the CompEcon toolbox calls

fspace=fundefn(’spli’,n,a,b);

or

fspace=fundefn(’lin’,n,a,b);

In either casen is the number of basis functions needed to define the family anda andb are

the lower and upper bounds of the approximation interval. WhenS is d-dimensional,n, a and

b should all be1× d vectors and tensor product basis functions will be formed from the basis

functions for each dimension (see Miranda and Fackler(2002), chapter 6, for more details).

The syntax above defines cubic spline or piecewise linear functions with evenly spaced

breakpoints on the interval[a, b]. The choice of the approximation interval is very important

for the accuracy of the solution. If the interval is too wide, a large number of nodal points

will be needed to obtain accurate solutions. If the interval is too small, endpoint problems may

corrupt the solution. A general rule of thumb is that the interval should wide enough to include

values to which the ergodic distribution ofS (if it exists) assigns non-trivial probability. If no

ergodic distribution exists (as with the widely used geometric Brownian motion), the interval

should be large enough relative to the discount rate. Essentially this means that if the process

starts near a switch point, the probability that it reaches the approximation boundary within

short period of time is small. How short a period of time is appropriate in this calculation
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is determined by how fast the future is discounted. From a practical point of view, one can

experiment with alternative values ofa andb. These should be made extreme enough that the

results of interest (generally the values of the switching points and the value function near these

points) are relatively unaffected by the choice.

The CompEcon toolbox also allows one to specify spline or piecewise linear functions with

unevenly spaced breakpoints. This may be useful if more accuracy is required. Putting more

breakpoints in regions of non-smooth behavior, especially around the switch points, can result

in much greater accuracy for the same order of approximation.

Some choice of nodal values must also be made. It is probably best to use the default

values provided by the CompEcon Toolbox unless one has strong reasons for another choice.

For splines and piecewise linear functions, the default nodal values are the breakpoints (with

an extra point added near each end for cubic splines). Evaluation at the breakpoints ensures

that the resulting basis matrices are well conditioned. The default nodal values used can be

obtained prior to callingossolve with the call6

snodes=funnode(fspace);

Starting values for the function coefficients can also be passed to the complementarity

solver. If initial values are not passed,ossolve will compute default values by solving for

the function coefficients that approximate a suboptimal value function with a decision rule that

never switches the currently active regime. This may be a reasonable choice for starting values

if nothing is known about the solution. If comparative static exercises are being performed

by solving a model multiple times at a set of alternative model parameters, a good choice of

6For multidimensional state variables (d > 1), snodes is returned as a1 × d cell array of columns vectors.

This can be transformed into ad-column matrix of points usingS=gridmanke(snodes ).
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starting values will generally be the values obtained from a previous call toossolve .

Several extensions are of the basic model increase the flexibility with which it can be ap-

plied. First, suppose that, in addition to the decision maker choosing which regime is active, it

is also possible that random exogenous shifts of regime occur. This possibility is described in

greater detail in another paper, but suffice is to say here that a model of this type can be spec-

ified by defining two additionalm × m matrices. The first of these,Λ, contains the Poisson

jump intensities associated with an exogenous switch from regimei to regimej. The second

matrix,Q, contains the costs imposed if such a jump occurs. Both matrices should have zeros

on the diagonal.

To specify a model of this type, themodel structure variable should contain two additional

fields, L and Q, which contain the two matrices (if eitherL or Q is missing or empty, it is

assumed to imply anm × m matrix of zeros). The only change in the algorithm is that the

definitions of theMi andqi need to be appropriately modified.

Another extension that is straightforward is to allow the switching costsC, the Poisson

intensitiesΛ and the costs due to exogenous switchingQ to all be functions ofS. Again, the

solution approach is essentially unchanged except that the specific values of theMi andqi need

to be adjusted appropriately. If the cost field is a string containing the word’variable’ the

solver calls the model function file with the flagC. The model function file should return an

n×m matrix containing the cost of switching from regimex to the other regimes (this should

contain a vector of zeros in columnx). A similar syntax applies toΛ andQ, with the flag

variable set toL andQ, respectively.
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A third extension handles the situation in which the value function is known at some speci-

fied point or points. In such a case the complementary conditions (17) and (18) associated with

the point(S,R) could be replaced by

φ(S)θR − V (S, R) ≥ 0 (26)

To implement this feature, the model variable should include a field namedvalues con-

taining ad+2 column matrix. Columns 1 throughd are the values ofS, columnd+1 contains

the regime numberR and the last column contains the value ofV (S, R). For example suppose

S is two-dimensional, withV ([S1 S2], R). Setting

model.values=[0 0 1 5;0 0 2 5]

will force V ([0 0], 1) = V ([0 0], 2) = 5. If all values in a specific dimension are involved, a

NaNcan be used in the associated column. For example, setting

model.values=[0 nan 0 1;nan 0 1 2]

will set V ([0 S2], 1) = 0, ∀S2 andV ([S1 0], 2) = 1, ∀S1. A value ofNaNcan also be used for

the regime number, so

model.values=[0 0 nan 5]

produces the same result as

model.values=[0 0 1 5;0 0 2 5]

To force the numerical procedure to produce an approximate solution with known values, the

optimality conditions (17) and (18) are replaced by condition (26) at the nodal points closest

to each of the(S, R) values.

Finally, it may be desirable to allow for resetting ofS when a regime switch occurs. For

example, one of the states might measure the time spent in the current regime since the last
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regime change (sodS = dt). This state would be reset to 0 every time the regime changes.

In general, if switching from regimei to regimej causesS to be reset toSij, condition (3) is

modified to

V (S, i) ≥ V (Sij, j)− Cij (27)

and condition (18) to

φ(S, i)θi − φ(Sij)θj + Cij ≥ 0 (28)

To implement this feature, the model variable should include a field namedreset con-

taining a2 + d column matrix. The firstd columns contain the target value of the state after

resetting. Columnd + 1 contains the regime before the switch and columnsd + 2 is the regime

after the switch. For example, if, on switching from regimei = 2 to regimej = 3, the state is

reset toSij = [0 1], use

model.reset=[0 1 2 3]

If some of the variables are not reset upon switching, set the value of the state for these di-

mensions toNaN. For example, if only the first state variable is reset to 0 when switching from

regime 1 to 2, use

model.reset=[0 nan 1 2]
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A Worked Example

This section demonstrates the application of theMATLAB procedures to the mine operation

example discussed earlier (the demonstration files are included with the solver). The example

first solves the model with a two dimensional state space(Q,P ) and then solves the same

model with the one-dimensional state spacey = QP .

The first requirement is the model function file:

function out=minemodel2(flag,s,R,mu,sigma,rho,h,k)
switch flag

case ’f’
out=(h * s(:,1). * s(:,2)-k). * (R==2);

case ’mu’
out=[-h * s(:,1). * (R==2) mu * s(:,2)];

case ’sigma’
out=[zeros(size(s,1),3) sigma * s(:,2)];

case ’rho’
out=rho;

end

In addition to the required first three inputs, this function is defined in terms of five of the model

parametersµ, σ, ρ, h andk (there are two additional model parametersC12 andC21).

To solve the model, we also write aMATLAB script file that is called from theMATLAB

command line. This file begins by defining the model parameters:

mu = 0.01;
sigma = 0.02;
rho = 0.04;
h = 1;
k = 2;
C12 = 5;
C21 = 2;

(the specific values are for demonstration purposes only). Next the model structure variable is

defined:
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clear model
model.func = ’minemodel2’;
model.params = {mu,sigma,rho,h,k};
model.cost = [0 C12;C21 0];

Then the family of approximating functions is defined:

fspace=fundefn(’lin’,[51 51],[0 0],[100 10]);

Here a piecewise linear function with 51 evenly spaced breakpoints forQ on [0,100] and 51

evenly spaced breakpoints forP on [0,10] are used (this family of approximating functions

uses finite difference derivatives). The solver is now called:

[cv,snodes,x]=ossolve(model,fspace);

Using the output, a plot of the optimal switch boundaries can be computed, as is shown in

the solid lines in Figure 1. The lower line represents the points for which it is optimal to switch

from active to inactive, the upper line represents the points for which it is optimal to switch

from inactive to active. The jaggedness in an inevitable consequence of the discreteness of the

nodal values. Although it might be useful to smooth these curves, no attempt has been made to

do so here.

The model can also be solved using the one dimensional reformulation. In this case the

model function file would be written

function out=minemodel1(flag,s,R,mu,sigma,rho,h,k)
switch flag

case ’f’
out=(h * s-k). * (R==2);

case ’mu’
out=(mu-h * (R==2)) * s;

case ’sigma’
out=sigma * s;

case ’rho’
out=rho;

end
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Figure1: Optimal Switch Boundaries for the Mine Example
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The model variablefunc field would be changed to the name of this procedure

model.func = ’minemodel1’;

Also thefspace variable would be altered

fspace=fundefn(’lin’,501,0,50);

This defines a family of piecewise linear functions with 501 breakpoints on [0 50]. When

calling the solver, it will be useful now to obtain the fourth outputxindex :

[cv,snodes,x,xindex]=ossolve(model,fspace);

Elements (1,4) and (2,1) ofxindex contain the approximate locations of the switch points

for the inactive and active regimes, respectively. For the parameter values given above, these

points are computed to be 17.3 and 1.9. The optimal switchpoints are therefore approximately

points satisfyingQP = 17.3 andQP = 1.9, which are shown in the dashed lines in Figure 1.
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The one-dimensional mine example has an almost explicit solution, which can be used to

obtain highly accurate optimal switching boundaries and value functions (see, e.g., Dixit and

Pindyck for discussion of this approach). To four decimal places, the switching boundaries are

17.2522 and 1.9233. For practical purposes, this is indistinguishable from the one-dimensional

numerical solution. Furthermore, the value function approximation was accurate to approxi-

mately four significant digits.

Summary

This paper describes a general numerical approach to solving optimal switching problems and

documents aMATLAB based implementation of the approach. The basic framework consists

of a model for a stochastic processS that characterized by its drift and diffusion functions

µ andσ, by a stream of rewards described by the functionf , by a discount rateρ (possibly

state contingent) and by a switching cost matrixC. The solution approach requires that these

parameters be specified along with a family of approximating functions. The solution algorithm

can then set up and solve a set of complementarity conditions that are satisfied at the problem

solution.

The solution approach described and implemented here has a number of important advan-

tages over previously described solution approaches. First, it is generic and hence the code

required to solve specific models is mainly limited to specifying the functions and parameter

values that define the model, along with code to call the solver and interpret the solver output.

Second, it can solve models with general multidimensional diffusion processes. This makes it

easy to solve models without the restriction to one-dimensional geometric Brownian motion
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found in much of the existing literature. Third, unlike the generic one-dimensional solver de-

scribed in Miranda and Fackler (chap. 11), the solution approach used here does not require

that the analyst guess at the qualitative nature of the optimal solution. In particular, it is not

necessary to know to which regime it is optimal to switch at the boundaries of the no-switch

regions.
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